
Research.js: Sharing Your Research on the Web

Joel Galenson, Cuong Nguyen, Cindy Rubio-González, Christos Stergiou, Nishant Totla
University of California, Berkeley

{joel,rubio,chster,nishant}@cs.berkeley.edu

Abstract
Most research tools are publicly available but rarely used
due to the difficulty of building them, which hinders the
sharing of ideas. Web browsers have recently become an
excellent platform for giving portable demos. Researchers
could enable their tools to run in a web browser by compiling
them into JavaScript, making the tools more accessible by
removing the need to configure and build them. In this paper,
we explore ideas to make sharing research easier.

1. Motivation
When computer scientists create tools in the course of their
research, they sometimes publicly release them. This is a
useful practice, as it allows other researchers to evaluate
and build on their ideas and potentially enables users to
use a practical tool. Conferences have begun to encourage
authors to submit artifacts to be evaluated along with their
papers [1, 3, 8].

Unfortunately, even when such tools are publicly avail-
able, they are often difficult to build. Finding all the depen-
dencies needed to build a program can require significant
effort, and even if a binary is available, it can be difficult
to figure out how to use it. A recent conference that en-
couraged authors to submit artifacts stipulated that the setup
should take less than 30 minutes [8], which is still a signifi-
cant amount of time for reviewers to spend on a single paper.

Recently, the web has become a powerful application
platform that makes it easy to run programs in a portable
fashion. Some research projects have made online versions
of their tools available, which has made it easy for others to
try them out (e.g., [4, 9]).

Unfortunately, the current practice for making research
tools available online requires that researchers set up and run
their own servers. This can be a difficult and costly process
that also imposes a limit on the number of concurrent users
to reduce load.1 In addition, most research tools are not
designed to be secure, so running them on a server with
arbitrary inputs from the web could be dangerous.

1 We do, however, agree that it is a significant step forward over current
practice; here we are proposing an alternative approach that could have
additional advantages.

We propose helping researchers compile their tools to
JavaScript, which would allow anyone with a web browser to
use them. This would allow researchers to make their tools
usable online without running their own secure servers. It
would also allow readers to browse through tool demos as
easily as they browse through web pages, thereby helping
them discover ideas that interest them and explore interest-
ing tools.

2. Approach
We propose building an infrastructure that makes it easy both
to take an existing project and compile it to JavaScript and
to put the JavaScript onto a webpage for users to visit.

2.1 Translation to JavaScript
We plan to leverage existing tools that translate programs
into JavaScript. For example, Emscripten [18] compiles
LLVM [17] bitcode to JavaScript. It contains wrappers
around Clang (LLVM’s C/C++ frontend) that allow it to
compile C/C++ code directly to JavaScript. Furthermore, in-
terpreters for many languages, including Python and Ruby,
have been compiled with Emscripten and could be used
to run code written in those languages. Finally, separate
projects for many other languages, including Scala, Haskell,
and OCaml, aim to generate JavaScript code directly [2, 7].
As a last resort, projects could be run in a JavaScript PC
emulator [11].

We focus on Emscripten in this paper. It targets asm.js [12],
a low-level subset of JavaScript that is designed to allow ex-
ecution at close to native speeds. Many projects have been
ported to JavaScript with Emscripten, including the Unreal
Engine 3 [10], LaTeX [6], Lua, Python, JavaScript, and parts
of LLVM and Emscripten themselves [2, 7]. It is thus rea-
sonably robust, and given its emphasis on porting games to
the web, performs reasonably well.

2.2 Other Issues to Consider
There are many issues to consider when translating research
projects into JavaScript. We discuss some of them below.

Binaries Many projects rely on closed-source binaries. In
theory, it might be possible to compile assembly code to
LLVM or decompile the binaries into a higher-level lan-
guage that could then be compiled normally. A web-based



Changes required
Name Source Make Compiles Runs

MiniSat [16] 0(0) 1(1) 4 4
Lingeling [13] 1(1) 0(0) 4 4
Boolector [14] 0(0) 0(0) 4 4

Hugs [5] 0(0) 2(2) 4 4
Z3 [15] 1(1) 1(1) 4 8

LLVM+Clang [17] 12(5) 3(3) 4 8

Table 1. The projects we have attempted to compile with
Emscripten, the number of changes required to compile them
(the number of lines of code and files changed), and whether
they compile and run.

emulator or sandbox for native code could allow the use of
binaries at the cost of significant extra complexity. We also
note that it is possible that the creator of the binary could
produce an obfuscated JavaScript file that would serve as a
binary for the web.

Libraries Projects often use many libraries, each of which
would have to be compiled with the above techniques. This
is not a theoretical concern, as we would like to be able
to compile all code, but it is a practical one, as compiling
one research project might involve compiling many libraries
used as dependencies. We believe that a central repository
that hosted all known ported libraries would help alleviate
this problem.

Performance A number of the techniques mentioned above,
such as running code in dynamic languages by running their
intepreters in JavaScript, will likely be much slower than
running the code natively. Luckily, performance is not criti-
cal for our domain, as most research tools are not optimized
and online demos do not usually need to be as fast as possi-
ble. Thus we will likely prioritize compatibility and ease-of-
use over performance.

3. Experience
Since our goal is to make it easy for researchers to port their
tools to JavaScript, we have started trying to use Emscripten
to compile tools such as compilers and SAT/SMT solvers.
We list all the projects we have compiled and their statuses
in Table 1. All but one of these projects compiled with
Emscripten after changing at most two lines of code, which
shows that this process is often easier than other alternatives.

To encourage others to compile their work to JavaScript,
we have made the changes required to compile each project
with Emscripten publicly available at https://github.

com/jgalenson/research.js. This link also contains de-
mos for MiniSat, Boolector, and Hugs.

We have analyzed the performance of our compiled ver-
sions of MiniSat, Lingeling, and Boolector on a few bench-
marks. On average, the Emscripten-compiled versions are
2.4-5.5x slower than native, which we believe is sufficient

for our purposes. Furthermore, to show that performance is
likely to improve further with more time, we compiled and
tested MiniSat with six-month-old versions of Emscripten
and Firefox and found that it was 11.4x slower than native.

We have also analyzed the build times and filesizes
of Emscripten-compiled projects. Compile times are 2-7x
slower and filesizes are 0.2-3x larger.

References
[1] ECOOP Artifacts. http://ecoop13-aec.cs.brown.edu/.

Accessed: 07/03/2013.

[2] Emscripten. https://github.com/kripken/

emscripten/wiki. Accessed: 11/22/2013.

[3] FSE Artifacts Report. http://cs.brown.edu/~sk/

Memos/Conference-Artifact-Evaluation/. Accessed:
07/03/2013.

[4] Flapjax. http://www.flapjax-lang.org/. Accessed:
07/03/2013.

[5] Hugs. http://www.haskell.org/hugs/. Accessed:
11/22/2013.

[6] LaTeX. http://manuels.github.com/texlive.js/

website/. Accessed: 07/03/2013.

[7] List of languages that compile to JS. https:

//github.com/jashkenas/coffee-script/wiki/

List-of-languages-that-compile-to-JS. Accessed:
11/22/2013.

[8] OOPSLA Artifacts. http://splashcon.org/2013/cfp/

665. Accessed: 07/03/2013.

[9] rise4fun. http://rise4fun.com/. Accessed: 07/03/2013.

[10] Unreal Engine 3. http://www.unrealengine.com/

html5/. Accessed: 07/03/2013.

[11] JavaScript PC Emulator. http://bellard.org/jslinux/.
Accessed: 07/03/2013.

[12] asm.js. http://asmjs.org/. Accessed: 07/03/2013.

[13] A. Biere. Lingeling, plingeling, picosat and precosat at sat
race 2010. FMV Report Series Technical Report, 10(1), 2010.

[14] R. Brummayer and A. Biere. Boolector: An efficient smt
solver for bit-vectors and arrays. In TACAS, pages 174–177.
Springer, 2009.

[15] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
TACAS, pages 337–340. Springer, 2008.

[16] Eén, Niklas and Sörensson, Niklas. An extensible sat-solver.
In Theory and Applications of Satisfiability Testing, pages
502–518. Springer, 2004.

[17] C. Lattner and V. Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In
CGO’04, Palo Alto, California, 2004.

[18] A. Zakai. Emscripten: an llvm-to-javascript compiler. In
SPLASH ’11, pages 301–312, 2011.

https://github.com/jgalenson/research.js
https://github.com/jgalenson/research.js
http://ecoop13-aec.cs.brown.edu/
https://github.com/kripken/emscripten/wiki
https://github.com/kripken/emscripten/wiki
http://cs.brown.edu/~sk/Memos/Conference-Artifact-Evaluation/
http://cs.brown.edu/~sk/Memos/Conference-Artifact-Evaluation/
http://www.flapjax-lang.org/
http://www.haskell.org/hugs/
http://manuels.github.com/texlive.js/website/
http://manuels.github.com/texlive.js/website/
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS
http://splashcon.org/2013/cfp/665
http://splashcon.org/2013/cfp/665
http://rise4fun.com/
http://www.unrealengine.com/html5/
http://www.unrealengine.com/html5/
http://bellard.org/jslinux/
http://asmjs.org/

	Motivation
	Approach
	Translation to JavaScript
	Other Issues to Consider

	Experience

